On the average number of cyclic subgroups of the groups $${\mathbb {Z}}_{n_1} \times {\mathbb {Z}}_{n_2}\times {\mathbb {Z}}_{n_3}$$ with $$n_1,n_2,n_3\le x$$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on supersolvability of finite groups with $mathbb p$-subnormal subgroups

in this paper we find systems of subgroups of a finite‎ ‎group‎, ‎which $bbb p$nobreakdash-hspace{0pt}subnormality guarantees supersolvability‎ ‎of the whole group‎.

متن کامل

Self-Dual Codes over $\mathbb{Z}_2\times (\mathbb{Z}_2+u\mathbb{Z}_2)$

In this paper, we study self-dual codes over Z2× (Z2+uZ2), where u 2 = 0. Three types of self-dual codes are defined. For each type, the possible values α, β such that there exists a code C ⊆ Z2×(Z2+uZ2) β are established. We also present several approaches to construct self-dual codes over Z2 × (Z2 + uZ2). Moreover, the structure of two-weight self-dual codes is completely obtained for α · β 6...

متن کامل

Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$

In this paper, we have studied cyclic codes over the ring R = Z4 +uZ4, u = 0. We have considered cyclic codes of odd lengths. A sufficient condition for a cyclic code over R to be a Z4-free module is presented. We have provided the general form of the generators of a cyclic code over R and determined a formula for the ranks of such codes. In this paper we have mainly focused on principally gene...

متن کامل

Skew cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$

In this article, we study skew cyclic codes over ring R = Fq + vFq + v 2 Fq, where q = p, p is an odd prime and v3 = v. We describe generator polynomials of skew cyclic codes over this ring and investigate the structural properties of skew cyclic codes over R by a decomposition theorem. We also describe the generator polynomials of the duals of skew cyclic codes. Moreover, the idempotent genera...

متن کامل

Computing the generator polynomials of $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes

A Z2Z4-additive code C ⊆ Z α 2 × Z β 4 is called cyclic if the set of coordinates can be partitioned into two subsets, the set of Z2 and the set of Z4 coordinates, such that any simultaneous cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z4[x]-module Z2[x]/(x − 1)×Z4[x]/(x −1). Any Z2Z4-additive cyclic code C is of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in Number Theory

سال: 2020

ISSN: 2522-0160,2363-9555

DOI: 10.1007/s40993-020-0186-6